

PABLO ASTORGA, ABB MICROGRIDS & DISTRIBUTED GENERATION, JANUARY 28, 2019

Advanced microgrids

Concepts and experience

Microgrids

Generation at the point of consumption and always available

Microgrid definition

Distributed energy resources and loads that can be operated in a controlled, coordinated way either connected to the main power grid or in "islanded"* mode.

Microgrids are low or medium voltage grids without power transmission capabilities and are typically not geographically spread out.

Operational goals and power system functions

Designed-in flexibility and control

Operational goals

- Maximize reliability
- Resilience in the face of severe weather or natural disasters
- Resilience in the face of a weak, unreliable grid
- Meeting environmental targets
- Maximizing penetration of renewable energy sources
- Minimizing operating expenditures
- Energy independence
- Participation in regulation or ancillary services markets

Microgrid control system

Energy storage and grid stabilization

Power system functions – "8S"

- 1. Stabilizing
- 2. Spinning reserve
- 3. STATCOM (static synchronous compensator)
- 4. Seamless transition between islanded and gridconnected states
- 5. Standalone operation
- 6. Smoothing
- 7. Shaving
- 8. Shifting

The rise of the EV

- EV charging stations increasingly considering a microgrid composed of grid + PV + BESS + EV chargers
- Opportunities
 - Solve capacity limitations of existing grid connections by avoiding expensive grid infrastructure upgrades
 - Resource optimization via technologies such as v2grid
- Challenges
 - Lack of historical data for EV charger load profile
 - Proper sizing for simultaneous use of fast EV chargers

Urban communities

Vestec, PowerStore/Solar/EV

About the Project

Solution

- Project name: Vestec microgrid
 Location: Vestec, Czech Republic
- Customer: CEZ

The resulting Microgrid system consists of:

- ABB Ability[™] PowerStore Battery (280 KW/280 kWh)
- Microgrid Plus control and automation system
- Remote monitoring
- Solar PV (50 kWp)
- EV chargers (3x 50 kW)

Customer Benefits

- Integration of renewables into overall facility
- Avoid upgrade of existing grid infrastructure
- Peak shaving and load shifting to optimize ESS use and EV charger use
- Seamless transition to island mode in case of grid failure

First-of-its kind solar-powered EV charging stations with ability to seamlessly transition into island mode in case of grid failure

©ABB January 28, 2019 | Slide 5

ABB

Beyond batteries

- Battery technology, especially Li-Ion, is under continuous improvement (both technically and commercially)
- Still, and depending on the application, often times other energy storage technologies might be a better fit than batteries. Projects need to be analyzed case-by-case
- In some cases, different energy storage technologies should be combined to offer the best solution (e.g. batteries and flywheels)
- Early planning and system studies are key to a successful specification

Island utilities

Kodiak Island, PowerStore/Wind/Hydro/Diesel

About the Project	 Project name: Kodiak Island Location: Alaska, United States of America Customer: Kodiak Electric Association (KEA) 	
Solution	The resulting Microgrid system consists of: - PowerStore Flywheel (2 MW/ 33 MWs) - Battery (3 MW / 750 kWh) - Wind (6 x 1.5 MW) - Hydro (3 x 11 MW) - Diesel (1 x 17.6 MW, 1 x 9 MW, 1 x 3.6 MW, 1 x 0.76 MW)	
Customer Benefits	 Stabilizing - frequency regulation Provide frequency support for a new crane (high cycling) Help to manage the intermittencies from a 9 MW wind farm Reduced reliance on diesel generators 	Press Release Infographic Video

Two PowerStore Flywheels act in parallel in order to deliver optimal grid stabilization on Kodiak Island

©ABB January 28, 2019 | Slide 7

ABB

Grid-connected microgrids: the case for optimization

- Market participation of end customer resources
 - Demand response
 - Weather forecast and day-ahead optimization
 - Load scheduling
 - Energy trading
 - Frequency support and other ancillary services
- Multiple POIs increase optimization complexity
- Optimization based on
 - CO2 emissions
 - Energy purchase from the grid
 - Overall System OPEX
- Optimization typically achieved via software layer on top of control/automation system

Urban communities

Odd soccer club's Skagerak Arena, PowerStore/Solar

About the Project	 Project name: Odd soccer club's Skagerak Arena Location: Skien, Norway Customer: Skagerak Energi 	Skagerak Ar		
Solution	The resulting Microgrid system consists of: – ABB Ability [™] PowerStore Battery (800 KW/1000 kWh) – Microgrid Plus control and automation system – Remote monitoring – Rooftop solar		C. C	
Customer Benefits	 Power stadium floodlights during soccer games Meet the annual power consumption of the stadium - 375,000 kWh Provide electricity to 15 homes in the stadium's neighborhood Facilitate utility to gather insights on prosumers' power production and consumption pattern 	Skagerak Energi	Press Release	
First-of-its kind solar-powered energy lab that will use microgrid solution coupled with a battery energy storage system to				

First-of-its kind solar-powered energy lab that will use microgrid solution coupled with a battery energy storage system to power a soccer stadium, as well as gather insight about power grids of the future

©ABB January 28, 2019 | Slide 9

Key aspects and main takeaways

- Early planning and project-specific design are key
- Flexibility in terms of technology can provide access to optimal solutions
- Modular, distributed architectures offer the most effective solution
- Standard interfaces and communication protocols are a must-have to integrate equipment from multiple vendors
- Software optimization offers many opportunities (and growing)

