

Proyecto TILOS

COMUNICACIÓN CON LA CENTRAL HÍBRIDA

Copper/Eth Cable

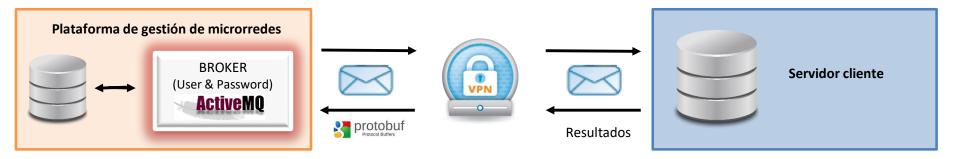
Proyecto TILOS

Protocolos:

- Modbus TCP: Ampliamente soportado por inversores y dispositivos de medición genéricos. Tilos: Acceso a datos de generadores fotovoltaicos.
- OPC XML-DA: Protocolo estándar para el intercambio de datos entre aplicaciones. Tecnología usada por los aerogeneradores Enercon. Tilos: Acceso a datos de aerogenerador.
- OPC XML-UA: No requiere la conexión COM/DCOM. Tilos: Acceso a datos de baterías y transmisión de resultados al operador de la central.
- IEC 61850: Protocolo estandarizado para automatización de subestaciones (protección, control, medición y supervisión). Tilos: Acceso a datos de demanda de la isla.

INSTITUTO TECNOLÓGICO

Gobierno de Canarias


Proyecto TILOS

www.tiloshorizon.eu

SISTEMA DE COMUNICACIÓN

COMUNICACIÓN CON CLIENTES EXTERNOS

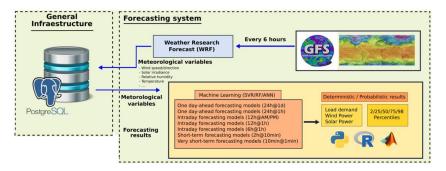
Comunicación asíncrona:

Características:

- Alta seguridad: Envío a través de una conexión segura VPN con mensajes codificados mediante Google Protobuf.
- Asíncrono: El bróker instalado en el servidor almacena los mensajes hasta que el cliente esté preparado.
- Protocolos: Permite la conexión a través de protocolos AMQP, MQTT, OpenWire y Stomp.
- Multiplataforma: El cliente puede conectarse usando distintos programas (Python, Java, C++, Perl, PHP).

Comunicación síncrona:

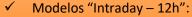
Características:


- Fácil conexión: No requiere el uso de medidas de seguridad distintas a la VPN.
- **Síncrono**: El emisor y el receptor del mensaje deben estar conectados.
- Protocolos: OPC XML-UA, Modbus y IEC61850.

Proyecto TILOS

SISTEMA DE PREDICCIÓN

Modelos desarrollados:


Global Forecast System (GFS) - Grecia

Datos de la central híbrida

- Modelos "One day-ahead":
 - Predicción para el día D+1 ejecutado a las 12:00 del día D.
 - Resolución horaria y total diario.

- Predicción del periodo 12:00 24:00 ejecutado a las 8:00
- Resolución horaria y total PM.
- Modelos "Intraday 6h":
 - Predicción cada 6 horas,
 - Resolución horaria.
- Modelos "Short-Term- 2h":
 - Predicción cada dos horas.
 - Resolución diezminutal.
- Modelos "Now-casting":
 - Predicción cada 10 minutos.
 - Resolución minutal.

Proyecto TILOS

SISTEMA DE PREDICCIÓN

Resultados (Métricas)

Validación de los modelos

- Periodo de validación:
 Diciembre 2016 Enero 2019 (2 años).
- Puesta en marcha en fase de operación: Octubre 2018.
- Métricas:

Análisis de la evolución mensual.

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{e}_i - o_i|$$

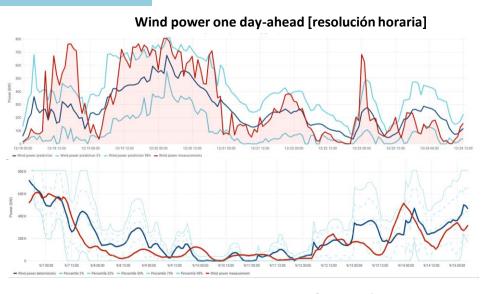
$$SMAPE = \frac{1}{N} \sum_{i=1}^{N} \frac{|o_i - \hat{e}_i|}{(|o_i| + |\hat{e}_i|)/2}$$

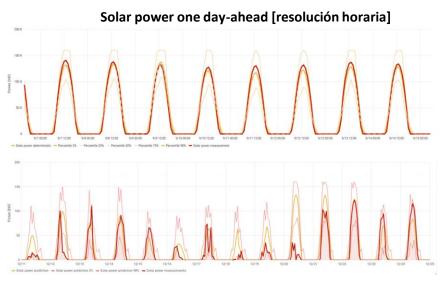
$$R^2 = 1 - \frac{\sum_{i=1}^{n} (o_i - \hat{e}_i)^2}{\sum_{i=1}^{n} (o_i - \bar{o})^2}$$

$$BS = \frac{1}{N} \sum_{k=1}^K n_k (f_k - \overline{o_k})^2 - \frac{1}{N} \sum_{k=1}^K n_k (\overline{o_k} - \overline{o})^2 + \overline{o} (1 - \overline{o})$$

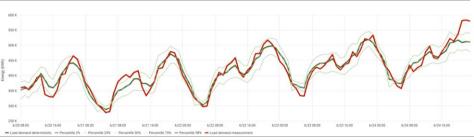
Forecasting model	MAE	SMAPE	R²	BS	
Solar power forecasting models					
One day-ahead [Resolución horaria]	8129	7.01%	80.4%	0.177	
One day-ahead [Total diario]	185005	6.79%	82.8%	-	
Intraday day-ahead [Resolución horaria]	12756	7.82%	79.7%	0.324	
6h@1h short-term	11509	7.04%	80.5%	0.392	
2h@10min short-term	12781	5.24%	85.3%	0.167	
10min@1min short-term	3409	4.67%	86.9%	0.156	

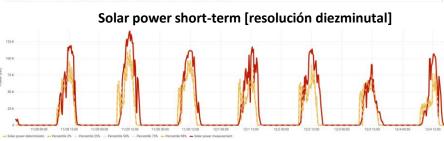
Forecasting model	MAE	SMAPE	R ²	BS
Wind power forecasting models				
One day-ahead [Resolución horaria]	123301	12.33%	84.3%	0.188
One day-ahead [Total diario]	1514592	9.69%	82.4%	1
Intraday day-ahead [Resolución horaria]	85995	13.38%	79.7%	0.195
6h@1h short-term	62437	12.67%	76.6%	0.221
2h@10min short-term	79587	8.83%	78.9%	0.151
10min@1min short-term	53133	6.32%	83.54%	0.092


Forecasting model	MAE	SMAPE	R ²	BS	
Load demand forecasting models					
One day-ahead [Resolución horaria]	23144	1.90%	87.3%	0.129	
One day-ahead [Total diario]	2775903	0.80%	91.2%	-	
Intraday day-ahead [Resolución horaria]	26872	2.00%	85.7%	0.155	
6h@1h short-term	18773	1.40%	81.3%	0.094	
2h@10min short-term	11641	0.90%	90.0%	0.072	
10min@1min short-term	9641	0.90%	92.7%	0.049	

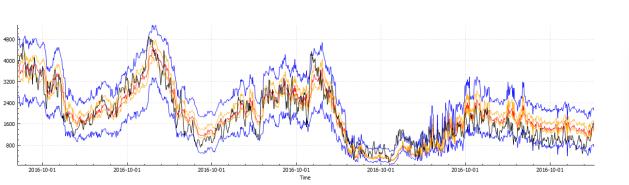


Proyecto TILOS


SISTEMA DE PREDICCIÓN



Load demand one day-ahead [resolución 400 K 400 K 400 K 400 K 401 CED 404 ADOSC 4


Technology Innovation for the Local Scale

SISTEMA DE PREDICCIÓN

1800 1200 Optimum Integration of Battery Energy Storage

APLICACIÓN EN CANARIAS – GORONA DEL VIENTO

2016-10-15

2016-10-15

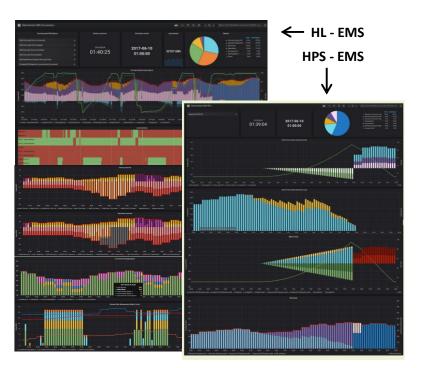
2016-10-15

Proyecto TILOS

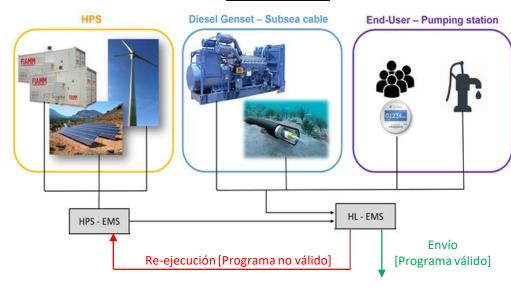
Características:

- Utilidad: Modelo especialmente diseñado para la predicción de rampas de caída de la producción en el corto plazo (10 - 30 minutos).
- Inputs: Datos recabados del propio sistema RTU-C de los aerogeneradores.
- **Desarrollo**: Modelo desarrollado cooperación con Gorona del Viento en el marco del proyecto INTERREG ENERMAC.
- Validación: Modelo validado con datos de dos años 2016 - 2017.

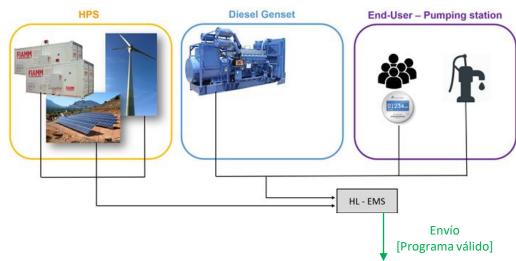
Resultados			
Modelo	Métrica		
MAE	408 kW		
sMAPE	5,97%		
R2	93,7%		
IoA	98,3%		



SISTEMA DE GESTIÓN ENERGÉTICA


Modelos:

- **Hybrid Power Station Energy Management System** (HPS - EMS):
 - Versión determinista.
 - Maximización del beneficio de la central híbrida.
- High Level Energy Management System (HL-EMS):
 - Versiones determinista y estocástico.
 - Modos aislado y conectado.
 - Estrategia de minimización de costes de operación del sistema.



Proyecto TILOS

Modo conectado

Modo aislado

SISTEMA DE GESTIÓN ENERGÉTICA

HPS - EMS

Utilidad:

Modelo desarrollado para el despacho de las unidades de producción de la central híbrida (parque eólico, planta fotovoltaica y baterías).

Estrategia:

Maximización del beneficio.

Características generales:

- Restricciones definidas conforme a principios estipulados en el Power Purchased Agreement (PPA):
 - ✓ <u>"Garantizado"</u>: Programa firme de generación/consumo.
 - Durante al menos 5 horas al día (óptimo económico).
 - Potencia entre 400 800 kW.
 - Al menos el 50% debe provenir de la batería.
 - Retribución entre un 30 40% mayor (depende de la hora).
 - ✓ <u>"Estocástico"</u>: Operación normal.
 - Facilidad aunque menor retribución.
 - Prioriza el uso de WP/PV al uso de batería.
 - ✓ <u>Absorción</u>:
 - Prioriza la carga de batería con excedentes WP/PV
 - Carga de batería de red (sólo en condiciones extraordinarias).
- Resultados:
 - ✓ Set-points
 - ✓ Reservas (batería).
- Modos de operación:
 - ✓ Load following.
 - ✓ Programa firme de generación/consumo.

Proyecto TILOS

Proyecto TILOS

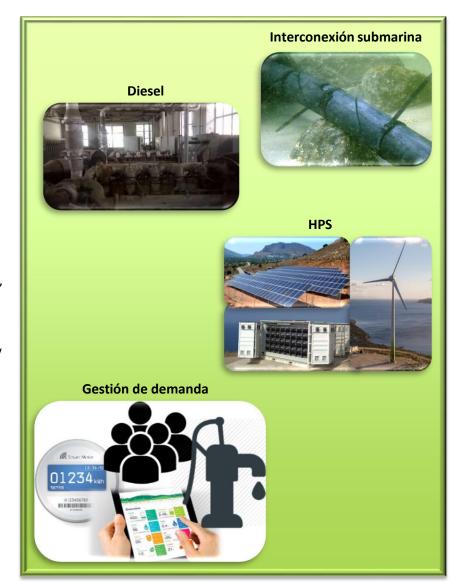
SISTEMA DE GESTIÓN ENERGÉTICA

HL - EMS

Utilidad:

Incorpora el resto de elementos del sistema eléctrico (grupo diésel, interconexión y gestión de demanda), evaluando la viabilidad del programa HPS-EMS.

Estrategia:


Minimización de costes de operación del sistema eléctrico.

Características generales:

- Grupo diésel e interconexión:
 - ✓ Simula las distintas fases de operación del grupo diésel (caldeado, sincronización, despacho y desincronización.
 - ✓ Considera el criterio N-1.
 - ✓ Define las reservas primerias, secundarias y terciarias.
 - ✓ Incorpora las reglas de mercado griego (retribución por operación y reservas).
- <u>HPS</u>:
- ✓ Comprueba la viabilidad del programa HPS EMS.
- ✓ Incorpora las características particulares de la batería NaNiCl2.
- Gestión de demanda:
 - Aplicada sobre sistemas de bombeo y termos eléctricos.
 - Prioriza su uso en horas de bajo coste y altos excedentes.

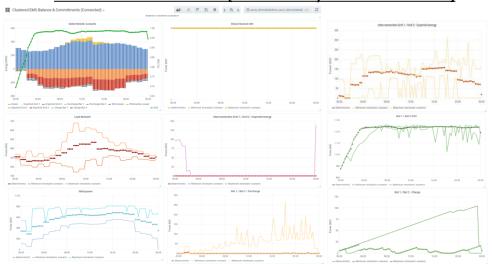
Resultados:

- ✓ Set-points.
- ✓ Reservas (convencional y batería).

Proyecto TILOS

SISTEMA DE GESTIÓN ENERGÉTICA

HL- EMS (Conectado) [Resultados 06/01/2019]



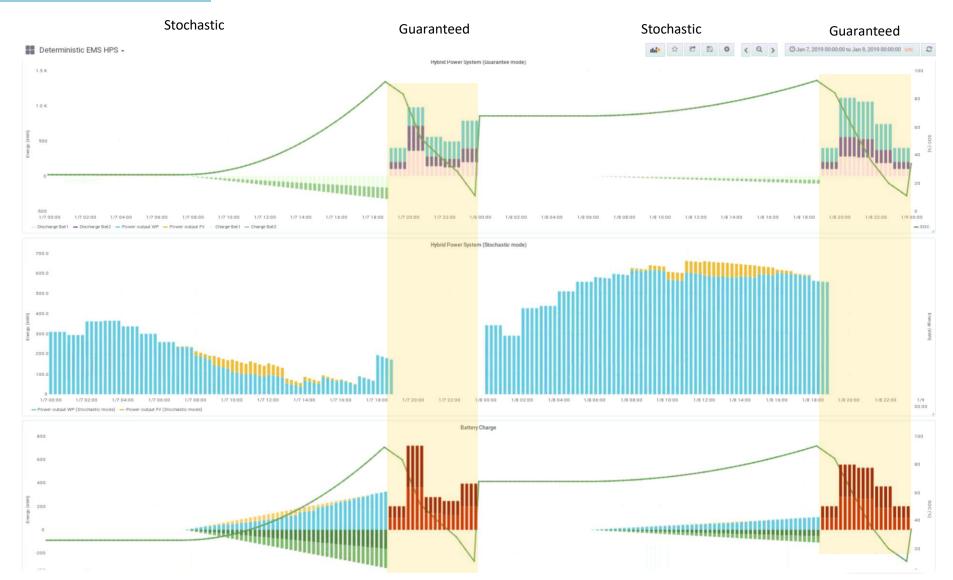
SISTEMA DE GESTIÓN ENERGÉTICA

Modelo estocásticos [Escenarios 08/01/2019]

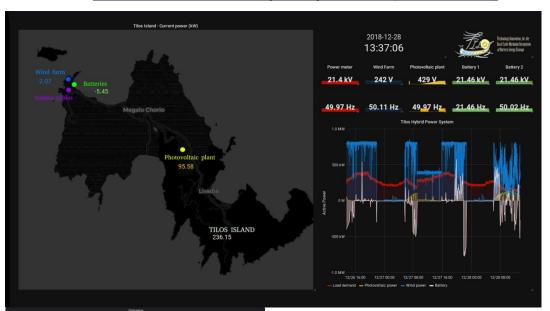
Clusterización de resultados [Determinista y escenarios extremos]

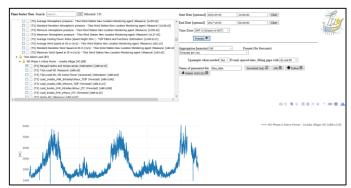
Proyecto TILOS

Previsión de reservas



Proyecto TILOS


HPS – EMS [Resultados 07/01/2019]


Proyecto TILOS

INTERFACES DE USUARIO E INFRAESTRUCTURAS GENERALES

Visualización de datos a tiempo real y resultados (Predicción/EMS)

Descarga de datos/resultados

Control del tráfico de información con clientes

Control de ejecución de modelos

Proyecto TILOS

CONCLUSIONES

Uso **independiente o coordinado** de comunicación, predicción y gestión energética.

Estructura de servicio permite la **ejecución automática** de la plataforma.

Plataforma en servicio en isla de **Tilos** (Grecia).

Puesta en operación en la microrred de Pozo Izquierdo.

Permite la incorporación de **nuevos modelos** en distintos lenguajes (Python, R Statistics, Matlab, C++, Java).

Acceso a resultados desde servicios web y envío a través de otros protocolos de comunicación estandarizados.

TECNOLOGÍAS, PROYECTOS PILOTO Y REGULACIÓN

Plataforma de Operación de Microrredes y Sistemas Híbridos

Santiago Díaz Ruano

Técnico de proyectos. Doctor Ing. Industrial

Dpto. Energías Renovables

INSTITUTO TECNOLOGICO DE CANARIAS S.A.

Consejería de Economía, Industria, Comercio y Conocimiento del Gobierno de Canarias

del Gobierno de Canarias